

Compact gradient generalized quasi-Einstein metrics with constant scalar curvature

J. N. Gomes^{*}, A. Barros

*UFAM - Manaus, AM

Resumo

A gradient generalized *m*-quasi-Einstein metric on a complete Riemannian manifold (M^n, g) is a choice of a potential function $f: M^n \to \mathbb{R}$ as well as a function $\lambda: M^n \to \mathbb{R}$ such that

$$Ric + \nabla^2 f - \frac{1}{m} df \otimes df = \lambda g, \qquad (1)$$

where *Ric* denotes the Ricci tensor of (M^n, g) , while $0 < m \leq \infty$ is an integer, ∇^2 and \otimes stand for the Hessian and the tensorial product, respectively.

It is important to point out that if $m = \infty$ and λ is constant, equation (1) reduces to one associated to a gradient Ricci soliton, as well as considering $m = \infty$ and λ not constant we obtain the almost Ricci soliton equation. In addition, if λ is constant and m is a positive integer, it corresponds to m-quasi-Einstein metrics that are exactly those n-dimensional manifolds which are the base of an (n + m)-dimensional Einstein warped product. He, Petersen and Wylie was given some classification for m-quasi-Einstein metrics where the base has non-empty boundary. Moreover, they have proved a characterization for m-quasi-Einstein metric when the base is locally conformally flat. We also point out that, Catino have proved that around any regular point of f a generalized mquasi Einstein metric $(M^n, g, \nabla f, \lambda)$ with harmonic Weyl tensor and $W(\nabla f, \dots, \nabla f) = 0$ is locally a warped product with (n - 1)dimensional Einstein fibers.

In this lecture we shall show that a compact gradient generalized m-quasi-Einstein metric $(M^n, g, \nabla f, \lambda)$ with constant scalar curvature must be isometric to a standard Euclidean sphere \mathbb{S}^n with the potential f well determined. This is a joint work with Abdênago Barros (UFC-CE).